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Introduction

이 논문은 causality 이론들을 측도론(measure-theory)을 이용하여
공리화(axiomatisation)하는 framework를 제안한 논문입니다.

기존의 Probability space에 causal mechanism이라 불리는 요소를
추가하여 causal space라는 개념을 정의하게 됩니다.

Causal space는 기존의 주요한 두 인과 추론 framework인
Stochastic Causal Models(SCMs)와 Potential Outcomes(PO)
framework를 잘 encode할 수 있으며,

또한 cycle이 있는 경우와 continuous-time stochastic processes 등,
기존 framework를 이용하여 수학적으로 표현되기 어려운 상황들도
잘 표현할 수 있습니다.
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Transition probability kernel

이 논문은 causality 이론들을 측도론(measure-theory)을 이용하여
공리화(axiomatisation)하는 framework를 제안한 논문입니다.

For measurable spaces (E, E) and (F,F), a mapping
K : E ×F → [0,1] is called a transition probability kernel from
(E, E) into (F,F) if the mapping K(x, ·) is a probability measure
on (F,F) for every x ∈ E and the mapping K(·, B) is measurable
for every set B ∈ F .
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Notation

• (Ω,H,P) = (×t∈TEt ,⊗t∈T Et ,P) is a probability space.

• P(T ) is the power set of T .

• For S ∈ P(T ), HS is the sub-σ-algebra of H = ⊗t∈T Et
generated by measurable rectangles ×t∈TAt ,
where At ∈ Et differs from Et only for t ∈ S.

• ΩS is the subspace ×s∈SEs of Ω = ×t∈TEt .
• For U ⊆ S ⊆ T , πSU is the natural projection from ΩS onto
ΩU .
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Introduction

• A causal space is defined as the quadruple (Ω,H,P,K).
• (Ω,H,P) = (×t∈TEt ,⊗t∈T Et ,P) is a probability space.

• K = {KS : S ∈ P(T )} is the causal mechanism: collection
of transition probability kernels KS from (Ω,HS) into (Ω,H).
• KS is the causal kernel on HS, which satisfies the following

axioms:
(i) for all A ∈ H and ω ∈ Ω, K∅(ω,A) = P(A)
(ii) for all ω ∈ Ω, A ∈ HS and B ∈ H,

KS(ω,A ∩ B) = 1A(ω)KS(ω,B)

(iii) for any A ∈ H, KS(ω,A) only depends on the πTS(ω)
component of ω.

5



Decomposition

For S ∈ P(T ), we denote ωS = πTS(ω).

Then note that Ω = ΩS ×ΩT\S and for any ω ∈ Ω, we can
decompose it into components as ω =

(
ωS, ωT\S

)
.

Recall that for any A ∈ H, KS(ω,A) = KS
((
ωS, ωT\S

)
, A
)

only
depends on the first ωS component of ω =

(
ωS, ωT\S

)
.

As a slight abuse of notation, we will sometimes write KS (ωS, A)
for conciseness.
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Example 1 (Altitude → temperature)

Example. Let E1 = E2 = R, and E1, E2 be Lebesgue σ-algebras
on E1 and E2. Each e1 ∈ E1 and e2 ∈ E2 respectively represent
the altitude(m) and temperature(◦C) of a random location.

P is a gaussian measure with mean vector

(
1000

10

)
and

covariance matrix

(
300 −15
−15 10

)
.

For each e1 ∈ E1 and A ∈ E2, we let K1 (e1, A) be the conditional
measure of P given e1 with mean 1200−e120 and variance 14 , and
K2 (e2, B) = P(B×E2) for each B ∈ E1, i.e. Gaussian measure
with mean 1000 and variance 300.
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Example 2 (Rice amount ↔ price)

Using causal model, a situation with “cyclic” causal relationship
can be naturally represented.

Example. Consider the relationship between the amount of rice in
the market and its price per kg.

E1 = E2 = R+

E1, E2 are Lebesgue σ-algebras and P is negatively correlated
multivariate normal distribution, which implies that the more rice
there is in the market, the lower the price without any
intervention.
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Example 2 (Rice amount ↔ price)

The causal kernel is K1(e1, x) = 2√
2π
e
− 1
2

(
x−(e1+1)
0.5

)2
which implies

that if the amount of rice in the market is fixed at e1, then the
price of rice will stabilize with mean e1 + 1 and standard deviation
0.5.

Similarly, K2(e2, y) = 2√
2π
e
− 1
2

(
y−e2
0.5

)2
which implies that if the

price of rice is fixed at e2, then the amount of rice in the market
will stabilize with mean e2 and standard deviation 0.5
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Appendix
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